您好、欢迎来到现金彩票网!
当前位置:ag视讯 > 干涉技术 >

甚长基线干涉测量的操作规范

发布时间:2019-08-04 07:13 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部1、甚长基线干涉测量的组成单位为射电望远镜,射电望远镜包含收集无线电波的定向天线、放大电波信息的高灵敏度的接收机、信息记录终端、氢原子钟保证时间同步、处理和显示系统五大部分。一个完整的VLBI系统需要至少两个观测点。2、数据处理中心。定向天线收集同一天体的射电辐射,接收机将这些信号加工、转化成可供记录和显示的形式,终端设备把信号记录下来,并按特定的要求进行数据回放和处理,然后显示大地测量的延迟和延迟率观测量等。 1、投射来的电磁波被一精确镜面反射后,同相到达公共焦点。用旋转抛物面作镜面易于实现同相聚焦,因此,射电望远镜天线大多是抛物面。射电望远镜表面和一理想抛物面的均方误差如不大于λ/16~λ/10,该望远镜一般就能在波长大于λ的射电波段上有效地工作。2、对米波或长分米波观测,可以用金属网作镜面;而对厘米波和毫米波观测,则需用光滑精确的金属板(或镀膜)作镜面。3、从天体投射来并汇集到望远镜焦点的射电波,必须达到一定的功率电平,才能为接收机所检测。目前的检测技术水平要求最弱的电平一般应达 10 ~20W。射频信号功率首先在焦点处放大10~1,000倍,并变换成较低频率(中频),然后由电缆将其传送至控制室,进一步放大、检波,最后以适于特定研究的方式进行记录、处理和显示。 地质学由于甚长基线干涉测量法具有很高的测量精度,所以用这种方法进行射电源的精确定位,测量数千公里范围内基线距离和方向的变化,对于建立以河外射电源为基准的惯性参考系,研究地球板块运动和地壳的形变,以及揭示极移和世界时的短周期变化规律等都具有重大意义。

  在天体物理学方面,由于采用了独立本振和事后处理系统,基线加长不再受到限制,这就可以跨洲越洋,充分利用地球所提供的上万公里的基线距离,使干涉仪获得万分之几角秒的超高分辨率。而且,随着地球的自转,基线向量在波前平面上的投影,通常会扫描出一个椭圆来。这样,在一天内对某个射电源进行跟踪观测的干涉仪,就可以获得各个不同方向的超高分辨率测量数据。依据多副长基线干涉仪跟踪观测得到的相关幅度,应用模型拟合方法,便可得到关于射电源亮度分布的结构图。地球大气对天体射电信号产生的随机相位起伏,带来了干涉条纹相位的测量误差。这和其他一些的误差来源一道,限制了甚长基线干涉测量法的应用。若在三条基线上对射电源进行跟踪观测,则由三个条纹相位之和所形成的闭合相位,基本上可以消去大气和时钟误差的随机效应。用这种闭合相位参与运算,可以达到较好的模型拟合,从而减小结构图的误差。

  随着投入观测的站数不断增多,闭合相位也在增多,而且各基线扫描的椭圆覆盖情况也会逐渐改善,从而可以得到更精确的结构图。用甚长基线干涉仪测到的射电结构图表明﹕许多射电源呈扁长形,中心致密区的角径往往只有毫角秒量级,但却对应着类星体或星系这样的光学母体;有些致密源本身还呈现小尺度的双源结构甚至更复杂的结构;从射电结构随时间变化的情况看来,有的小双源好像以几倍于光速的视速度相分离。这些新发现给天体物理学和天体演化学提出了重大的研究课题。 观测卫星

  中国科学院的VLBI网是测轨系统的一个分系统,它由北京、上海、昆明和乌鲁木齐的四个望远镜以及位于上海的天文台的数据处理中心组成。这样一个网所构成的望远镜分辨率相当于口径为3000多公里的巨大的综合望远镜,测角精度可以达到百分之几角秒,甚至更高。

  VLBI测轨分系统的具体任务是获得卫星的VLBI测量数据,包括时延、延迟率和卫星的角位置,并参与轨道的确定和预报。具体的任务,比如说完成卫星在24小时、48小时周期的调相轨道段的测轨任务。完成卫星在地月转移轨道段、月球捕获轨道段以及环月轨道段的测轨任务。并且还要参加调相轨道、地月转移轨道、月球捕获轨道段的准实时轨道的确定和预报。

  VLBI测轨分系统从2007年10月27日起,即卫星24小时的调相轨道段的第一天正式实施对嫦娥一号卫星的测量任务。现在已经完成了24小时、48小时调相轨道、地月转移轨道段和月球捕获轨道段的第一天总共十天的测量任务。

  VLBI分系统的各测站数据处理中心设备工作正常,VLBI测量数据及时传输到北京的航天飞控中心,数据资料很好,满足了工程的要求,为嫦娥一号卫星的精确定轨作出了贡献。

  天文学家通过甚长基线干涉技术(VLBI),能够将相距很远的几台望远镜联合为一台虚拟望远镜。这样的望远镜具有非常高的分辨率,可以用来观测黑洞边缘的事件视界。

  2015年1月13日,在德国马普射电天文研究所(MPIfR)天文学家的努力下阿塔卡玛探险者实验(APEX)与阿塔卡玛大型毫米波天线阵(ALMA)成功联合观测,组成一个2.08公里的虚拟望远镜,与7000公里外的南极望远镜(SPT)进行了连接。它们通过甚长基线干涉技术(VLBI)连接在一起。更大的望远镜可以进行更敏锐的观测,而干涉可以让多个相距遥远额望远镜像一个望远镜一样工作,并且其尺度与望远镜之间的距离——也被称为“基线”——一样大。使用VLBI,可以通过尽可能增大望远镜的间隔而得到更清晰的观测结果。

  联合望远镜最先指向了两个已知的黑洞——一个是银河系的人马座A*,另一个位于1000万光年以外的半人马A星系中。这项观测中,智利的APEX望远镜与相距7000公里的南极SPT进行了连接,其分辨率比以往所有对南半球天空的观测都要高。

  甚长基线干涉技术使得科学家能够将多座位于世界各地的射电望远镜联网,建立起一座更大的虚拟望远镜,观测能力更加强大。有了这个巨大的望远镜后,科学家就能够对银河系中央的黑洞进行观测,该黑洞被命名为人马座A*,有望观测到黑洞周围出现的亮环。 IVS: International VLBI Service for Geodesy and Astrometry(应用于测地和天测的国际VLBI服务)的缩写,为全球性的VLBI应用于天体测量和地球动力学方面的合作组织,开展VLBI观测、数据处理及技术发展的国际合作并提供服务。

  EVN:European VLBI Network(欧洲VLBI网)的缩写。它首先由欧洲国家发起成立的VLBI组织。自1994年起,中国的上海和乌鲁木齐VLBI站也参加了该组织,所以目前实质上为欧亚VLBI网。EVN提供天体物理及某些天体测量课题的观测及进行VLBI技术发展的国际合作。

  APT:Asia-Pacific Telescope(亚太射电望远镜)的缩写,它由亚太地区VLBI组织或者台站组成,每年不定期地组织天文学和地球动力学方面的VLBI观测,并组织学术交流。

  CORE:Continuous Observation Rotation of Earth(地球自转连续观测)的缩写,它为美国NASA的一项研究计划,由美国NASA的GSFC主持,全球大多数具有天测/测地能力的VLBI台站参加了该项计划。其主要科学目的就是用VLBI技术高精度连续测量地球自转参数;同时,也为天球参考系、地球参考系的建立和维持及现代板块运动观测提供高精度的数据。

  VSOP:VLBI Space Observatory Program(VLBI空间观测站计划)的缩写。它为日本文部省宇宙科学研究所主持的一项空间VLBI计划,它将一台等效口径8m的天线发射至地球卫星轨道上,构成了一个空间VLBI站,其远地点为2万余km。全球大多数地面VLBI站均参加了该项计划的空地VLBI观测,所以它也形成了一项全球性的VLBI合作计划。

http://dpi-berlin.net/ganshejishu/972.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有